domingo, 22 de febrero de 2009

Nombre Alumna : marco Alexander rivera,juan pablo Erazo y Jefferson maya
Curso : motor diesel
Profesor Asignatura :Luis Felipe bolaños

Introducción
En este trabajo se pretende mostrar una pequeña parte del mundo tecnológico de las herramientas las que son esenciales para este complejo mundo de la mecánica automotriz.
En este contexto el uso adecuado de una herramienta tecnológicamente diseñada en que la persona que la manipula coordina creativamente practicas de trabajo herramientas maquinas y conocimientos para satisfacer necesidades o aspiraciones.
Respecto al su particular tanto hombres y mujeres pueden relacionarse con ella desde diferentes perspectivas, tales como usuario como técnicos y como innovadores de este mundo automotriz que estamos viviendo de sofisticadas tecnologías y de constantes evolución.
Prensas:
Estas son herramientas de tipo y uso muy variados, pero todas sirven para un propósito general: sujetas una pieza de trabajo mientras se efectúan operaciones de maquinado. Los tornillos de banco de fabrican de hierro fundido con una de sus mordazas sujetas a la base y la otra ajustada mediante una manivela o una palanca. El tamaño de un tornillo de banco se determina por el ancho de sus mordazas. Algunos tornillos de banco tienen base fija mientras que otros tienen base giratoria. Las caras internas de la mordaza que son de acero templado, tienen por lo general dientes de sierra cortados en toda su superficie y con frecuencia pueden dañar las piezas de trabajo terminadas o las fabricadas de metales blandos como el aluminio. Para impedir que ocurra lo anterior se fabrican mordazas blandas para deslizarlas sobre las mordazas comunes de los tornillos.
Pinzas:
Las pinzas se fabrican en varias formas y con diversos tipos de acción de mordaza. Las piezas de combinación simple o pinzas de articulación deslizante sirve para la mayorías de los trabajos en que se necesitan pinzas. La articulación deslizante permite abrir la mordazas para sujetar una pieza de trabajo de mayor tamaño. Estas pinzas también se conocer como pinzas de mecánico, se miden por su longitud total y se fabrican en tamaño de 5, 6, 8 y 10 pulgada. Las pinzas no deben usarse nunca como substitutos de una llave de tuercas, porque la turca o la cabeza del tornillo pasante que se tome con ellas se deforma permanentemente debido al moleteado de dientes de sierra de las mordazas de la pieza, y una vez que esto ocurre, la llave de tuerca ya no toma bien ni la tuerca ni la cabeza del tornillo. Las pinzas de puntas redondas se usan también para hacer lazadas o espiras en alambre y para conformar metales delgados. Las pinzas de trabajo pequeñas y delicadas en espacios muy reducidos. Se fabrican con puntas recta y con puntas dobladas.
Martillo:
Los martillos se clasifican en duros y blandos. Los martillos duros tienen la cabeza de acero, como los tipos de martillo para herrero o marros que se fabrican para martillado pasado. El martillo de bola es el que usan con más frecuencia en mecánica. Tiene su superficie redondeada en un extremo de la cabeza, que es el que se usa para conforma o remachar metal y una superficie plana para golpear en el otro.
Llave de tuercas:
Se fabrica una variedad de llave de tuercas para diferentes usos, como para dar vuelta a tuercas y tornillo de cabeza cuadrada o hexagonal. La llave de ajuste o llave perica es una herramienta para todo uso, y sin embargo no es adecuada para todo uso, y sin embargo no es adecuada para todos los trabajos, especialmente los que requieren trabajos es espacios reducidos. La llave de uercas debe girarse hacia la mordaza móvil y debe ajustarse apretada a la tuerca o cabeza de tornillo que se trate de apretar o aflojar. El tamaño de la llave se determina por su longitud total expresada en pulgadas o milímetros. Las llaves de bocas abiertas o llaves españolas son las más apropiadas para tornillos pasantes de cabeza cuadrada, y generalmente son para dos tamaños, uno en cada extremos. Los extremos de este tipo de llave están situados a un cierto ángulo para que puedan usarse en un espacio reducido. las llaves de caja son semejantes a las estrías en que también circundan a la cabeza de tornillo o a la turca, y se fabrica para insertarse en diversos tipos de manerales.
Desarmadores:
Los dos tipos de desarmadores que más usan son el estándar u ordinario y el phillips ambos de fabrican de diversos tamaños y varios estilos, rectos, con zanco y con boca desplazada.
Gatos Hidráulico:
Herramienta multifuncional accionada con sistemas hidráulicos que cumple la función de realizar levantamiento de gran peso, también sirven para la restauración (estirar) determinados elementos automotriz.
Limas:
Son elementos de desbaste utilizados para pulir o asentar determinadas piezas de los motores, su función va ha depender del tipo de diente que estas tengan y material en el cual va hacer utilizado.
Estetoscopio:
Instrumento de auscultación de gran utilidad en la detección de ruidos al interior de los diversos sistemas que operan en los vehículos.
Compresimetros:
Elemento de precisión que cumple la función de medir la capacidad de compresión que tienen los cilindros u otros elementos que funcionen a través de principios neumáticos e hidráulicos, su medida de medición son las libras.
Taladros:
Son operadores de perforación de gran utilidad en diversas funciones en la restauración (reparación) de motores, pueden ser utilizados de diferentes formas dependiendo de los accesorios con que se cuenten, existen de los mas variados tipos tales como eléctricos, neumáticos y manuales.
Extractores:
Extractores de gran robustez y versatilidad. Gran variedad de modelos. El material es acero cromo vanadio forjado, con perfil de forma de viga, ligero y resistente. Las uñas fresadas permiten el acceso a lugares estrechos. Amarre seguro de brazos en cuerpo mediante tornillos. Husillos de rosca laminada, pavonados. Protección del extractor, por zincado

Llaves de torque:
La llave dinamométrica Indicadora de Torque garantiza el apretado adecuado de los tornillos para obtener la máxima fuerza de precarga y evitar el aflojamiento. Un instrumento mecánico, sencillo y fácil de usar que no requiere mantenimiento. Se puede utilizar con cualquier punta destornilladora o transportadora de conexión universal. La misma llave transmite 20 ó 35 Ncm de Torque al tornillo con una precisión de 1 Ncm. Al ser un instrumento mecánico su precisión es máxima, muy superior a la de los instrumentos electrónicos.
Micrómetros - Piedemetro
Micrómetros con arcos especiales forjados y esmaltados en negro. Números de lectura rápida. Tiene reten de trinquete y freno. Graduación en .001". Micrómetro de interiores donde la capacidad deseada se logra ensambla do las varillas de medir y los calibradores a la cabeza del micrómetro. Cada varilla tiene un ajuste Micrómetro de interiores donde la capacidad deseada se logra ensamblan do las varillas de medir y los calibradores a la cabeza del micrómetro. Cada varilla tiene un ajuste individual de longitud y puntas endurecidas y rectificada y una parte saliente para lograr asentamiento preciso en la cabeza del micrómetro. Viene con 4 varillas, un calibrador de 1" y dos de 2" Gradación en 0.001".
Terrajas:
Herramienta de presión destinadas a restaurar y confeccionar hilos a determinados elementos con la finalidad de unirlos con otros. Existen de los más variados tamaños, estilos y medidas.
Fresas:
Instrumento de devastación y rectificador de piezas, funcionan en altas revoluciones, teniendo la capacidad de trabajar varios accesorios dependiendo de la restauración y fabricación.
Torno:
Permite fabricación y restauración de las mas variadas gamas piezas con que cuentan los sistemas automotrices

martes, 17 de febrero de 2009


Rudolf Christian Karl Diesel (París, 18 de marzo de 1858 – Canal de la Mancha, 30 de septiembre de 1913) fue un ingeniero alemán inventor del motor de combustión de alto rendimiento que lleva su nombre, el motor diésel. Motor aplicable a la locomoción, presentado en la feria internacional de París como el primer motor que usa aceite mineral como combustible y posteriormente llamado "motor de combustión", que tomaría el nombre de su inventor.

Hijo de inmigrantes bávaros, nació en París. En 1870 la familia tuvo que abandonar Francia al estallar la guerra franco-prusiana, y Rudolf fue enviado a Augsburgo.

Discípulo del inventor de la nevera Carl von Linde a partir de 1875 en Múnich. Regresó a París como representante de la empresa de máquinas frigoríficas de su maestro.

Entre 1893 y 1897 construyó en MAN (perteneciente al grupo Krupp) el primer motor del mundo que quemaba aceite vegetal (aceite de palma) en condiciones de trabajo.

El Instituto de Ingenieros Mecánicos le concedió la Orden del Mérito por sus investigaciones y desarrollos sobre los motores con aceite de cacahuete, posteriormente usaron petróleo por ser más barato.

Se consideraba a sí mismo como un filósofo social, aunque su libro Solidarity, donde describe su visión de la empresa, sólo vendió 200 ejemplares.

Se supone que murió la noche del 29 al 30 de septiembre de 1913 y se supone que ahogado, pues desapareció del buque que cubría el trayecto de Amberes a Inglaterra en el que viajaba. Un par de días después su cuerpo fue encontrado por un bote de la guardia costera. Como era lo común en ese entonces, sólo se tomaron sus pertenencias (identificadas posteriormente por su hijo) y el cuerpo fue arrojado de nuevo al mar.

Se manejan varias hipótesis sobre su muerte, la primera indica que se suicidó en vista de encontrarse en quiebra, aunque su familia creyó que fue asesinado y sus ideas robadas. Otra hipótesis indica que agentes alemanes lo asesinaron para evitar la difusión de sus inventos, en vista de que la guerra se encontraba cercana y él estaba decidido a permitir que cualquiera (Francia e Inglaterra entre ellos) comprara licencias sobre sus patentes.

¿Cómo funciona el motor diesel?

A diferencia del motor a gasolina en que se comprime una mezcla de aire y gasolina y se hace arder con una chispa mediante una bujía, en el motor diesel, se comprime sólo el aire elevándose la temperatura a aproximadamente 500º C. Luego, en el aire comprimido se inyecta el combustible y éste se inflama espontáneamente.
Los motores diesel son más eficientes que los de gasolina. Estos últimos sólo aprovechan el 22 al 24% de la energía, mientras que en los diesel, el aprovechamiento puede superar el 35%. Por ello, estos motores encontraron rápida aplicación en barcos, locomotoras, camiones pesados y tractores.
Tal como la calidad de una gasolina se expresa por el índice octano, la calidad del diesel se expresa mediante el índice de cetano, que es una medida de la tendencia del diesel a inflamarse espontáneamente y por lo tanto, del grado de eficiencia de la combustión. Este índice cetano está referido a una mezcla de n-hexadecano, llamado también cetano (valor =100) y α-metil naftaleno (valor = 0). En general, el índice cetano del diesel varía entre 45 y 55, lo que asegura una buena combustión y baja contaminación ambiental.
presentado por:
juan pablo erazo
jeferson maya
marco alexander rivera



Robert Bosch

(Albeck, 1861-Stuttgart, 1942) Inventor e industrial alemán. Estudió en EE UU y en 1886 fundó un taller mecánico de precisión y electrotecnia, que transformó en 1937 en la empresa Robert Bosch. Se le debe el desarrollo del encendido magnético y la bomba de inyección para los motores Diesel.
CICLO OTTO
El ciclo Otto es el ciclo termodinamico ideal que se aplica en los motores de combiustion interna. Se caracteriza por ser un proceso en el cual la combustión de la mezcla aire - combustible se produce a presion aproximadamente constante (expansión adiabatica) dado que el pistón se desplaza hacia abajo mientras se realiza.
CICLO CARNOT
Una máquina de Carnot, aquella que sigue este ciclo, es perfecta, es decir, convierte la máxima energía térmica posible en trabajo mecánico. Carnot demostró que la eficiencia máxima de cualquier máquina depende de la diferencia entre las temperaturas máxima y mínima alcanzadas durante un ciclo. Cuanto mayor es esa diferencia, más eficiente es la máquina. Por ejemplo, un motor de automóvil sería más eficiente si el combustible se quemara a mayor temperatura o los gases de escape salieran a menor temperatura.
El teorema de Carnot indica que ninguna máquina térmica que intercambie calor únicamente con dos focos o fuentes térmicas tiene un rendimiento (eficiencia térmica) mayor que la máquina de Carnot trabajando entre esos dos focos. Esto hace que todos los motores de Carnot que funcionen entre dos mismas fuentes de calor tienen igual rendimiento y la dependencia será exclusivamente de la temperatura de los focos
Combustión, proceso 2-3: en esta idealización, se simplifica por un proceso isóbaro. Sin embargo, la combustión Diesel es mucho más compleja: en el entorno del PMS (en general un poco antes de alcanzarlo debido a problemas relacionados con la inercia térmica de los fluidos), se inicia la inyección del combustible ( en motores de automóviles, gasóleo, aunque basta con que el combustible sea lo suficientemente autoinflamable y poco volátil). El inyector pulveriza y perliza el combustible, que, en contacto con la atmósfera interior del cilindro, comienza a evaporarse. Como quiera que el combustible de un motor Diesel tiene que ser muy autoinflamable (gran poder detonante), ocurre que, mucho antes de que haya terminado la inyección de todo el combustible, las primeras gotas de combustible inyectado se autoinflaman y dan
1. comienzo a una primera combustión caracterizada por ser muy turbulenta e imperfecta, al no haber tenido la mezcla de aire y combustible tiempo suficiente como para homogeneizarse. Esta etapa es muy rápida, y en el presente ciclo se obvia, pero no así en el llamado ciclo Diesel rápido, en el que se simboliza como una compresión isócora al final de la compresión. Posteriormente, se da, sobre la masa fresca que no ha sido quemada, una segunda combustión, llamada combustón por difusión, mucho más pausada y perfecta, que es la que aquí se simplifica por un proceso isóbaro. En esta combustión por difusión se suele quemar en torno al 80% de la masa fresca, de ahí que la etapa anterior se suela obviar. Sin embargo, también es cierto que la inmensa mayoría del trabajo de presión y de las pérdidas e irreversibilidades del ciclo se dan en la combustión inicial, por lo que omitirla sin más sólo conducirá a un modelo imperfecto del ciclo Diesel.Consecuencia de la combustión es el elevamiento súbito del estado termodinámico del fluido, en realidad debido a la energía química liberada en la combustión, y que en este modelo ha de interpretarse como un calor que el fluido termodinámico recibe, y a consecuencia del cual se expande en un proceso isóbaro reversible.
COMPOSICION DEL AIRE
El aire limpio y puro forma una capa de aproximadamente 500 000 millones de toneladas que rodea la Tierra, de las su composición es la siguiente:
Componente Concentración aproximada
1. Nitrógeno (N) 78.03% en volumen
2. Oxígeno (O) 20.99% en volumen
3. Dióxido de Carbono (CO2) 0.03% en volumen
4. Argón (Ar) 0.94% en volumen
5. Neón (Ne) 0.00123% en volumen
6. Helio (He) 0.0004% en volumen
7. Criptón (Kr) 0.00005% en volumen
8. Xenón (Xe) 0.000006% en volumen
9. Hidrógeno (H) 0.01% en volumen
10.Metano (CH4) 0.0002% en volumen
11.Óxido nitroso (N2O) 0.00005% en volumen
12.Vapor de Agua (H2O) Variable
13.Ozono (O3) Variable
14.Partículas Variable

presentado por:
jeferson mya
juan pablo erazo
marco alexander rivera

La presión atmosférica es la presión ejercida por el aire en cualquier punto de la atmósfera. Normalmente se refiere a la presión atmosférica terrestre, pero el término es extensible a la atmósfera de cualquier planeta o satélite.

La atmósfera en la Tierra tiene una presión media de 1013.25 hectopascales (hPa) (o milibares (mbar)) al nivel del mar, medido en latitud 45º. La medida de presión del Sistema Internacional de Unidades (SI) es el newton por metro cuadrado (N/m²) o Pascal (Pa). La presión atmosférica a nivel del mar en unidades internacionales es 101325 N/m² ó Pa.

Cuando el aire está frío, éste desciende, haciendo aumentar la presión y provocando estabilidad. Se forma, entonces, un anticiclón térmico. Cuando el aire está caliente, asciende, haciendo bajar la presión y provocando inestabilidad. Se forma entonces un ciclón o borrasca térmica.

Además, el aire frío y el cálido tienden a no mezclarse, debido a la diferencia de densidad, y cuando se encuentran en superficie, el aire frío empuja hacia arriba al aire caliente provocando un descenso de la presión e inestabilidad, por causas dinámicas. Se forma entonces un ciclón, o borrasca dinámica. Esta zona de contacto es la que se conoce como frente. Cuando el aire frío y el cálido se encuentran en altura, descienden en convergencia dinámica, haciendo aumentar la presión y provocando estabilidad, y el consiguiente aumento de la temperatura. Se forma, entonces un anticiclón dinámico.

Se denomina atmósfera a la capa de aire, constituida por una mezcla homogénea de gases que rodea un planeta, variando drásticamente de uno a otro. Su peso, origina sobre todos los cuerpos sumergidos en ella, una presión denominada atmosférica, que podemos evidenciar mediante la experimentación. Podríamos compararlo como si viviéramos en el fondo de un océano de aire. La atmósfera, como el agua de un lago, ejerce presión; y tal como el peso del agua es la causa de la presión en el agua, el peso del aire es la causa de la presión atmosférica. Estamos tan acostumbrados al aire invisible que a veces olvidamos que tiene peso. Quizás los peces también "olvidan" que el agua tiene peso.